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We consider the case of homogeneous turbulence in a conducting fluid that is exposed
to a uniform external magnetic field at low to moderate magnetic Reynolds numbers
(by moderate we mean here values as high as 20). When the magnetic Reynolds
number is vanishingly small (Rm � 1), it is customary to simplify the governing
magnetohydrodynamic (MHD) equations using what is known as the quasi-static
(QS) approximation. As the magnetic Reynolds number is increased, a progressive
transition between the physics described by the QS approximation and the MHD
equations occurs. We show here that this intermediate regime can be described by
another approximation which we call the quasi-linear (QL) approximation. For the
numerical simulations performed, the predictions of the QL approximation are in
good agreement with those of MHD for magnetic Reynolds number up to Rm ∼ 20.

1. Introduction
1.1. Motivation and objectives

Magnetohydrodynamics (MHD) applies to many conductive fluid and plasma flows
encountered in nature and in industrial applications. In numerous circumstances, the
flow is subject to a strong mean magnetic field. This happens in the earth’s liquid
core and is ubiquitous in solar physics for topics such as sunspots, solar flares, solar
corona, solar wind, etc. Mean magnetic fields play an important role on even larger
scales, for instance in the dynamics of the interstellar medium. Among the industrial
applications involving applied external magnetic fields are drag reduction in duct
flows, design of efficient coolant blankets in tokamak fusion reactors, control of
turbulence of immersed jets in the steel casting process and advanced propulsion and
flow control schemes for hypersonic vehicles.

Depending on the application, the magnetic Reynolds number, Rm, can vary
tremendously. In astrophysical problems, Rm can be extremely high as a result of
the dimensions of the objects studied. On the contrary, for most industrial flows
involving liquid metal, Rm is very low, usually less than 10−2. When an external
magnetic field is present, it is customary at such low values of Rm to make use of the
so-called quasi-static (QS) approximation. In this approximation, induced magnetic
fluctuations are much smaller than the applied magnetic field and the overall magnetic
effect amounts to adding in the Navier–Stokes equations an extra damping term which
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only affects Fourier modes having a component parallel to the magnetic field (more
details below). The derivation of the QS approximation involves taking the limit of
vanishing Rm and its domain of validity is thus an interesting question. Indeed certain
applications, such as advanced schemes for the control of magnetogasdynamic flows
around hypersonic vehicles, involve values of Rm of the order 1 to 10 (see e.g. Poggie &
Gaitonde 2002). It is thus valuable to possess reliable approximations in this regime
that can be used in place of the full nonlinear MHD (in the sequel, when referring to
MHD, we always mean the full nonlinear theory).

The limit of vanishing Rm (with mean magnetic field) has been the subject of
several theoretical studies in the past. Lehnert (1955) concentrates on the final period
of decay of a convective fluid governed by the completely linearized MHD equations
(Re � 1, Rm � 1). The suppression of turbulence by a magnetic field was studied
in Moffatt (1967) (Re � 1, Rm � 1) again using linearized equations. In short, both
works focus on the time evolution of the energy of the Fourier modes as a function of
their wave vectors. Using prescribed energy spectra, Moffatt (1967) also obtains global
energy decay rates. In another theoretical investigation relevant to the present study
Davidson (1995) derives in the quasi-static framework the conservation of momentum
and angular momentum parallel to the direction of the magnetic field (neglecting
viscous dissipation). Focusing on jets and vortices, the author then describes how the
flow structures need to elongate in the direction of the magnetic field in order to
lower their energy loss while satisfying the above conservation laws. The elongation of
structures in the direction of the magnetic field was also studied earlier in Sommeria &
Moreau (1982), however, in the context of linearized equations.

To our knowledge, the first numerical study of MHD turbulence in the regime
Rm � 1 is due to Schumann (1976). All the simulations in that work were done using
a modified three-dimensional spectral code implementing the QS approximation.
However, because of the computer resources available at that time, the resolution of
the simulations was limited to 323 grid points. The numerical experiment of Schumann
(1976) reproduces the thought experiment described in Moffatt (1967) in which an
initially homogeneous isotropic flow is suddenly subjected to an applied external
magnetic field. A quantitative description of the magnetic damping and building of
anisotropy is presented as well as the dependence of the results on the presence or
not of the nonlinear term in the Navier–Stokes equation. Again considering the QS
approximation, the case of forced turbulence in a three-dimensional periodic domain
has first been studied in Hossain (1991) and more recently in Zikanov & Thess (1998).

Performing MHD simulations in the limit of low Rm is impractical. Aside from the
increased complexity arising from having to carry a separate evolution equation for
the magnetic field, the main problem lies in the time scales involved in the problem.
Indeed, at vanishing magnetic Reynolds number, the magnetic diffusion time scale
tends to zero. The only possibility in that case is to resort to the QS approximation for
which this time scale is not explicitly relevant. Simulations of MHD have thus been
restricted so far to cases where the magnetic and kinetic time scales are of the same
order. This is the case when the magnetic Prandtl number (see below) is close to 1.
Among the numerous previous numerical studies of MHD in this regime, we mention
the work of Oughton, Priest & Matthaeus (1994) which is the most relevant to the
present discussion. They consider the same three-dimensional periodic geometry with
an applied external magnetic field as in Schumann (1976).

In the present article, we will consider the decay of MHD turbulence under
the influence of a strong external magnetic field at moderate magnetic Reynolds
numbers. Typical values of Rm that are considered here range from ∼ 0.1 to ∼ 20. As
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Resolution 2563

Box size (lx × ly × lz) 2π × 2π × 2π
Rms velocity 1.76
Viscosity 0.006
Integral length-scale (3π/4 × (

∫
κ−1E(κ) dκ

∫
E(κ) dκ)) 0.679

Re = uL/ν 199
Dissipation (ε) 8.39
Dissipation scale (γ = (ν3/ε)1/4)) 0.0127
kmaxγ 1.62
Microscale Reynolds number (Rλ =

√
15/(νε)u2) 53.5

Eddy turnover time (τ = (3/2)u/ε)) 0.554

Table 1. Turbulence characteristics of the initial velocity field. All quantities
are in m.k.s. units.

a comparison, the initial kinetic Reynolds number common to all our simulations is
ReL = 199. This means that the range of Prandtl numbers explored is 5 × 10−4 to 10−1.
Our motivation is mainly to exhibit how the transition from the QS approximation
to MHD occurs. At the lowest values of Rm studied here, the QS approximation is
shown to model the flow faithfully. However, for the higher values of Rm considered,
it is clearly inadequate but can be replaced by another approximation which will
be referred to as the quasi-linear (QL) approximation. Another objective of the
present study is to describe how variations in the magnetic Reynolds number (while
maintaining all other parameters constant) affect the dynamics of the flow. This
complements past studies where variations in either the strength of the external
magnetic field or the kinetic Reynolds number were considered.

This article is organized as follows. In § 2, we review the derivation of the quasi-
static approximation and stress the assumptions that might pose a problem as the
magnetic Reynolds number is increased. Section 3 is devoted to the description of the
numerical experiments performed using the quasi-static approximation and MHD.
In § 4, we describe the quasi-linear approximation and test it numerically against full
MHD. A concluding summary is given in § 5.

2. MHD equations in the presence of a mean magnetic field
2.1. Dimensionless parameters

Two dimensionless parameters are usually introduced to characterize the effects
of a uniform magnetic field applied to unstrained homogeneous turbulence in an
electrically conductive fluid. They are the magnetic Reynolds number Rm and the
interaction number N (also known as the Stuart number):

Rm ≡ vL

η
=

(
L2

η

)/(
L

v

)
, N ≡ σB2L

ρv
=

τ

τm

. (2.1)

In the above expressions, v =
√

〈uiui〉 /3 is the r.m.s. of the fluctuating velocity ui;
L is the integral length scale of the flow (defined in table 1); η = 1/(σµ) is the
magnetic diffusivity where σ is the electric conductivity of the fluid, and µ is the fluid
magnetic permeability; ρ is the fluid density and B is the strength of the applied
external magnetic field. The magnetic Reynolds number represents the ratio of the
characteristic time scale for diffusion of the magnetic field L2/η to the time scale of
the turbulence τ =L/v. Related to Rm, we can also define a magnetic Prandtl number
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representing the ratio of Rm to the hydrodynamic Reynolds number ReL,

Pm ≡ ν

η
=

Rm

ReL

, ReL =
vL

ν
. (2.2)

The interaction number N represents the ratio of the large-eddy turnover time τ to the
Joule time τm = ρ/(σB2), i.e. the characteristic time scale for dissipation of turbulent
kinetic energy by the action of the Lorentz force (see e.g. Davidson 2001). N can be
viewed as a measure of the ability of an imposed magnetic field to drive the turbulence
to a two-dimensional three-component state. Indeed, under the continuous action of
the Lorentz force, energy becomes increasingly concentrated in modes independent
of the coordinate direction aligned with B. As a two-dimensional state is approached,
Joule dissipation decreases because fewer and fewer modes with gradients in the
direction of B are left available. In addition, the tendency towards two-dimensionality
and anisotropy is continuously opposed by nonlinear angular energy transfer from
modes perpendicular to B to other modes, which tends to restore isotropy. If N is
larger than some critical value Nc, the Lorentz force is able to drive the turbulence
to a state of complete two-dimensionality. For smaller N , the Joule dissipation is
balanced by nonlinear transfer before complete two-dimensionality is reached. For
very small N , the anisotropy induced by the Joule dissipation is negligible.

2.2. The quasi-static approximation

In this section, we review the derivation of the quasi-static approximation (Roberts
1967). Although standard, the inclusion of the discussion here will prove useful when
introducing the quasi-linear approximation in § 4.

If the external magnetic field Bext
i is explicitly separated from the fluctuations bi ,

the incompressible MHD equations can be written as

∂tui = −∂i(p/ρ) − uj∂jui +
1

(µρ)

(
Bext

j + bj

)
∂j

(
Bext

i + bi

)
+ ν
ui, (2.3)

∂t

(
Bext

i + bi

)
= −uj∂j

(
Bext

i + bi

)
+

(
Bext

j + bj

)
∂jui + η


(
Bext

i + bi

)
, (2.4)

where p is the sum of the kinematic and magnetic pressures and ν is the kinematic
viscosity. Since we consider initially isotropic freely decaying homogeneous turbulence,
there is no mean velocity field. Therefore, for the sake of simplicity, we avoid
introducing explicitly a decomposition of the velocity field into mean and fluctuating
parts. Also, the external magnetic field is taken to be homogeneous and stationary so
that (2.3) and (2.4) reduce to

∂tui = −∂i(p/ρ) − uj∂jui +
1

(µρ)
bj∂jbi +

1

(µρ)
Bext

j ∂jbi + ν
ui, (2.5)

∂tbi = −uj∂jbi + bj∂jui + Bext
j ∂jui + η
bi. (2.6)

As pointed out in Roberts (1967), (2.6) can be simplified considerably for flows at
low magnetic Reynolds numbers. Indeed, by definition, the limit Rm � 1 describes
flows for which nonlinear terms resulting from magnetic fluctuations are negligible
when compared to the dissipative term in (2.6). This is easily seen by adopting the
traditional scalings,

‖uj∂jbi‖ =
vb

L
, ‖bj∂jui‖ =

vb

L
, ‖η
bi‖ =

ηb

L2
, (2.7)
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where b =
√

bibi/3, and noting that

Rm =
vL

η
=

‖uj∂jbi‖
‖η
bi‖

=
‖bj∂jui‖
‖η
bi‖

. (2.8)

In place of (2.6) we thus have, in the limit Rm � 1,

∂tbi = Bext
j ∂jui + η
bi. (2.9)

The so-called quasi-static (QS) approximation is obtained by further assuming that
∂tbi ≈ 0 in (2.9). To understand how this comes about, we consider the time scales
of the two terms on the right-hand side of (2.9). Since Bext is independent of time,
the time scale of Bext

j ∂jui is T = L/v, while the time scale of the diffusion term can

be identified with the damping time T∗ = L2/η. The ratio of these two time scales is
then

T∗

T = Rm, (2.10)

indicating that at low magnetic Reynolds number, diffusion time is much smaller than
large-eddy turnover time. This justifies the assumption ∂tbi ≈ 0 since the magnetic
fluctuations then adapt instantaneously to the slowly varying velocity field and reach
their asymptotic values for which ∂tbi ≈ 0 (see § 4 for more details). In the QS
approximation, we thus have

η
bi = −Bext
j ∂jui. (2.11)

Using a Fourier representation for ui and bi , this equation is readily solved and yields

bm(k, t) = i

(
Bext

j kj

)
ηk2

um(k, t), (2.12)

where we have defined

um(k, t) =
∑

x

um(x, t) exp(−ik · x), bm(k, t) =
∑

x

bm(x, t) exp(−ik · x). (2.13)

Since bi is now expressed completely in terms of ui , the evolution equation for the
velocity field can be explicitly closed. In Fourier representation we obtain,

∂tum(k, t) = −ikmp′(k, t) − [uj∂jui]m(k, t) − σ
(B ext · k)2

ρk2
um(k, t) − νk2um(k, t), (2.14)

where p′ = p/ρ (consistently with the small magnetic fluctuations assumption, the
second-order term bj∂jbi does not appear in (2.14)).

To summarize, two simplifications are required in order to reach (2.14). The first
consists in neglecting the nonlinear terms uj∂jbi and bj∂jui in (2.6). The second is
obtained by discarding the time derivative of bi in (2.9). These two simplifications are
consequences of the assumption Rm � 1 and we should thus expect them to break
down when the magnetic Reynolds number is increased. In the next sections, we test
the QS approximation by comparing its predictions to those obtained using the MHD
equations (2.5) and (2.6).
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Run number η Bext
A N (t0) Rm(t0)

1 11.95 5.57 1 0.1
2 1.195 1.76 1 1
3 0.239 0.787 1 5.0
4 0.119 0.557 1 10.0
5 0.0597 0.394 1 20.0
6 11.95 17.6 10 0.1
7 1.195 5.57 10 1
8 0.239 2.49 10 5.0
9 0.119 1.76 10 10.0

10 0.0597 1.24 10 20.0

Table 2. Summary of the parameters for the different runs performed.

3. Numerical results: QS vs. MHD
3.1. Parameters

To test the domain of validity of the QS approximation, we have used two different
pseudospectral codes. The first one simulates the MHD equations (2.5) and (2.6),
while the second one simulates (2.14). All the runs presented here have a resolution
of 2563 Fourier modes in a (2π)3 computational domain.

The initial condition for the velocity field is common to both codes. It consists
of a developed turbulence field that is adequately resolved in the computational
domain adopted. Some of its characteristics are given in table 1. For the MHD
case, an initial condition for bi has to be chosen at t = t0. Here, we have made the
choice bi(t0) = 0. In other words, our simulations describe the response of an initially
non-magnetized turbulent conductive fluid to the application of a strong magnetic
field. The corresponding completely linearized problem has been described in detail
in Moffatt (1967). For the QS approximation case, an initial condition for bi is, of
course, not required since the equation for the velocity field is completely closed. In
that case, the initial condition for the magnetic field is, in fact, implicitly given by
(2.12) at t = t0. We could then argue that the two codes do not simulate the same flow
since they do not have the same initial condition for the magnetic field. However,
the independence of the QS approximation on the initial magnetic field is an aspect
that is interesting to test. If the flow behaves according to the QS approximation,
the magnetic field (using MHD) should very rapidly converge to the value given by
(2.12).

In order to distinguish between our numerical runs, we will vary the values of the
interaction parameter and the magnetic Reynolds number (at t = t0). When these two
quantities are set, the only free parameters in the evolution equations (2.5), (2.6) and
(2.14) are completely determined, i.e.

Bext
A =

Nv2

Rm

, η =
vL

Rm

(3.1)

where Bext
A is the external magnetic field strength in Alfvén units Bext

A = Bext/
√

µρ

and the values of v and L are given in table 1. The values of Rm and N for all our runs
are given in table 2 along with the corresponding values of η and Bext

A . Because of
the finite computer resources available, we note the following two restrictions about
the present work. First, because of the limitation in the achievable kinetic Reynolds
number, the simulations (except in the quasi-static limit) do not reach values of the
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Figure 1. Evolution with time of the kinetic energy at different Stuart numbers and magnetic
Reynolds numbers. , QS approximation; , Rm = 0.1; , 1; , 5; , 10; ,
20; + , Bext = 0.

Prandtl number as low as we could wish and present in traditional liquid–metal
applications. Secondly, at the later stage of the kinetic energy decay, flow structures
tend to be elongated strongly in the direction of the imposed magnetic field. In that
case, the appropriateness of the periodic boundary conditions is questionable. This
issue is unavoidable, but thankfully arises only in one direction.

3.2. Results

In this section we present some results obtained by performing the simulations detailed
in § 3.1.

3.2.1. Kinetic energy decay

In figure 1, we plot the time evolution of the normalized kinetic energy,

EK =
1

EK (0)

∫
dx 1

2
ui(x)ui(x). (3.2)

In this and subsequent figures, time has been non-dimensionalized using the Joule
timescale (see (2.10)). Keeping N constant, it is clear from the figure that as the
magnetic Reynolds number is decreased, the decays converge to the quasi-static
limit (dotted curve). At Rm = 0.1, MHD and the QS approximation are barely
distinguishable for the cases run; at Rm = 1, differences are clearly observed. As
expected, the discrepancy between MHD and the QS approximation is quite severe
at intermediate values of the Rm. We also note here the presence of oscillations in the
kinetic energy at long times for the case N = 10. Their origin is well known (see e.g.
Lehnert 1955 or Moffatt 1967) and results from the laminarization of the flow for long
times. In that case, the MHD equations (2.6) and (2.5) reduce to their linear versions
and become (in Fourier space) a system of linear oscillators coupled through the
external magnetic field. In that limit, turbulence is dominated by the propagation of
interacting Alfvén waves. In both figures, the case Bext =0 (i.e. pure hydrodynamics)
has been included to emphasize the role of the magnetic field in the other runs.

3.2.2. Magnetic energy evolution

The next diagnostic we examine is the evolution of the energy contained in the
magnetic fluctuations. This quantity is defined through,

EM =

∫
dk 1

2
|bi(k, t)|2. (3.3)
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Figure 2. Evolution with time of the magnetic energy computed from (3.3).
, Rm = 0.1; , 1; , 5; , 10; , 20.

For each set of runs at fixed N two graphs are presented. The left-hand side graphs
represent ‘zoomed’ versions of the right-hand side graphs and have been included in
order to show with more detail the initial magnetic growths for the different runs. At
t = t0, the evolution of the magnetic field is determined by,

∂tbi |t=0 = Bext
j ∂jui |t=0 , (3.4)

with Bext given by (3.1). As the magnetic Reynolds number is decreased, the initial
slope of (3.3) should thus increase and this is exactly what is observed in the left-
hand side graphs of figure 2. After some time, the magnetic energies all reach their
maximum value and then start to decrease. The rate of decay increases at lower
magnetic Reynolds numbers since in the limit chosen, η = vL/Rm. Related to the
oscillations in the kinetic energy we observe for N = 10 some oscillations in the
magnetic energy at long times.

In order to describe the transition from QS behaviour to MHD in the simulations
as the magnetic Reynolds is increased, a second measure of the magnetic energy can
be introduced:

EM1 =
1

EM1(t0)

∫
dk 1

2

(
Bext

j kj

)2

η2k4
|ui(k, t)|2. (3.5)

This is the (normalized) energy of the magnetic fluctuations when they are computed
from the QS expression (2.12). When the dynamics are governed by the QS
approximation, (3.5) should coincide with EM/EM1(t0). This is illustrated in figure 3.
At magnetic Reynolds number Rm = 0.1, EM/EM1(t0) and EM1 are very close soon
after the external magnetic field is switched on. This indicates that, in a very short
time, the magnetic fluctuations forget their initial state and ‘align’ with the predictions
of the QS approximation (2.12). This is entirely in the spirit of the assumption that
at low magnetic Reynolds number the time derivative in (2.9) can be neglected (or
rather that it is significant only during a very short transient time). At higher values
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Figure 3. Comparison of magnetic energies computed from (3.3) and (3.5) .
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Figure 4. Anisotropy angle θu computed from (3.6). , QS approximation;
, Rm = 0.1; , 1; , 5; , 10; , 20.

of the magnetic Reynolds number, such as Rm = 5, this transient time becomes longer
and the ‘true’ energy content of the fluctuations reaches values comparable to those
predicted by the QS expression only after several Joule times.

As we expect, this discussion indicates that neglecting the time derivative of bi in
the induction equation is problematic when the magnetic Reynolds number reaches
moderate values.

3.2.3. Anisotropy

A characteristic feature of MHD flows subject to a strong external magnetic field
is the appearance of a strong anisotropy in the flow. In the QS approximation this
is easily seen by observing that in (2.14) only Fourier modes with wave vectors
having a non-zero projection onto Bext

i are affected by the extra Joule damping. In
order to quantify the anisotropy we follow the approach of Shebalin, Matthaeus &
Montgomery (1983) and Oughton et al. (1994) by introducing the anisotropy angles,

tan2 θu =

∑
k2

⊥‖ui(k)‖2

∑
k2

z ‖ui(k)‖2
, (3.6)

tan2 θb =

∑
k2

⊥‖bi(k)‖2

∑
k2

z ‖bi(k)‖2
, (3.7)

where k⊥ = k2
x + k2

y and the summations are extended to all values of k.
When the flow is completely isotropic, we have tan2 θu = 2 implying θu � 54.7◦.

If the flow becomes independent of the z-direction then tan2 θu → ∞ or equivalently
θu → 90◦. Figure 4 shows the evolution with time of θu for the different runs. At
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Figure 5. Anisotropy angle θb computed from (3.7). , QS approximation;
Rm = , 0.1; , 1; , 5; , 10; , 20.

N = 1, the anisotropy is only important for the QS, Rm =0.1 and Rm =1 runs. For
N = 10, all the runs become highly anisotropic.

The initial anisotropy in the magnetic field can also be computed exactly. At time
t0 +
t (
t � 1), bi(k) is computed using (3.4): bi(k, t0 +
t) = iBext

z kzui(k, t0)
t . This
means that at t0 + 
t , (3.7) can be rewritten as:

tan2 θb =
Ax + Ay

Az

, (3.8)

with

Ax =

∫
dkxdkydkz k2

x k2
zQ(k), (3.9)

Ay =

∫
dkxdkydkz k2

y k2
zQ(k), (3.10)

Az =

∫
dkxdkydkz k4

zQ(k), (3.11)

where Q(k) = ‖ui(k, t0)‖2 depends only on the norm of k (note that for calculus
purposes we have replaced summations by integrals). Switching to spherical
coordinates (kz = k cos θ , kx = k sin θ cos φ, ky = k sin θ sin φ), we observe that the only
difference between Ax , Ay and Az comes from the angular integrations: Ax = Iax ,
Ay = Iay , Az = Iaz where,

I =

∫ ∞

0

dk k6 Q(k), (3.12)

ax =

∫ 2π

0

dφ

∫ π

0

dθ sin3 θ cos2 φ cos2 θ, (3.13)

ay =

∫ 2π

0

dφ

∫ π

0

dθ sin3 θ sin2 φ cos2 θ, (3.14)

az =

∫ 2π

0

dφ

∫ π

0

dθ sin θ cos4 θ. (3.15)

All these angular integrals are easily computed: ax = ay = 4π/15, az = 4π/5. We thus
have,

tan2 θb(t0 + 
t) = 2
3
, i.e. θb(t0 + 
t) � 39.2◦. (3.16)

Figure 5 shows the evolution with time of θb for the different runs. Both plots
exhibit surprising behaviour. In the case N =1, we would expect θb to remain close
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to its initial value since the velocity field remains largely isotropic (as it is at the
beginning of the simulation). Instead, θb evolves to a value compatible with an
isotropic magnetic field. In the case N = 10, some strong oscillations in the magnetic
anisotropy are observed. For the times considered, no clear trends in the mean are
present. Note that some oscillations are also present in the velocity anisotropy, but
are much less pronounced.

4. The quasi-linear approximation
4.1. Governing equations

The preceding section indicates that, for our numerical simulations at magnetic
Reynolds numbers of the order 10−1 − 1, the QS approximation and MHD produce
nearly identical results. For higher values of Rm, the QS approximation is not valid and
has to be replaced to predict the flow accurately. Since magnetic fluctuations remain
small in all the runs performed, it is natural still to consider a linearized induction
equation. However, results reported in § 3.2.2 support the idea that neglecting the
time derivative of bi in the induction equation is not appropriate in the context of
moderate Rm.

We thus consider here an intermediate approximation which is defined by the
following simplified MHD equations:

∂tui = −∂i(p/ρ) − uj∂jui +
1

(µρ)
Bext

j ∂jbi + ν
ui, (4.1)

∂tbi = Bext
j ∂jui + η
bi. (4.2)

This approximation will be referred to as the quasi-linear (QL) approximation since
only the nonlinear terms involving the magnetic field are discarded whereas the
nonlinear convective term in the velocity equation is retained. Of course, if ∂tbi is
neglected in (4.2) we immediately recover the quasi-static approximation.

Equation (4.2) is nothing other than a diffusion equation for the magnetic field
with a source term given by Bext

j ∂jui . In Fourier space, the solution of this equation
is easily obtained and reads,

bi(k, t) = bi(k, t0) exp(−ηk2t) + i

∫ t

t0

dτkjB
ext
j ui(k, τ ) exp(−ηk2(t − τ )). (4.3)

From the first term on the right-hand side of (4.3), we see that the initial condition
for bi is damped more rapidly with increasing magnetic diffusivity (if v and L are
constant this is equivalent to a decrease in the magnetic Reynolds number). Note
that with the initial condition we have chosen for the magnetic field, i.e. bi(t0) = 0,
this first term vanishes. At high magnetic diffusivity, the integral in (4.3) converges
to (2.12) and the QS approximation holds. More explicitly, we have the situation
depicted in figure 6. The interval between the dashed lines represents the support in
which exp(−ηk2(t − τ )) is significant and thus where there is some contribution to
the integral of (4.3). As η increases, this interval becomes smaller, and ui(k, t) may
be assumed constant in that short period of time. The integration is then immediate
and we obtain,

bi(k, t) = bi(k, 0) exp(−ηk2t) +
ikjB

ext
j

ηk2
[1 − exp(−ηk2(t − t0))]ui(k, t), (4.4)
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ui(k,τ)

exp    (–ηk2(t – τ))

ui

0 t τ

Figure 6. Evaluation of bi(k, t) in the quasi-linear approximation.
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which converges to (2.12) in the limit η → ∞. Thus, the time history of ui(k, t) plays
a role only when η is relatively small, in which case the exponential has a wider
support.

4.2. Results

In order to compare the QL approximation with MHD, we have performed the same
numerical simulations as described in § 3, but this time using (4.1) and (4.2) instead
of the QS approximation.

4.2.1. Kinetic energy decay

In figures 7 and 8, we present the time history of the kinetic energy (as defined by
(3.2)) obtained from both MHD and the QL approximation. For reference, we have
also included the predictions obtained using the QS approximation. For N = 1, the
QL approximation and MHD agree nearly perfectly for all values of the magnetic
Reynolds number. For N = 10, the agreement is still very good.
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4.2.2. Magnetic energy evolution

Figures 9 and 10 represent the time evolution of the energy of the magnetic
fluctuations (defined by (3.3)) for the different runs. In all cases, there is a systematic
overestimate of the peak energies by the QL approximation. This overestimate is
more pronounced for the case at N = 1 than for those at N = 10.
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4.2.3. Anisotropy

In figures 11 and 12, the anisotropy angle θu computed from the QL approximation
and MHD is displayed. For reference, we have also included the anisotropy evolutions
predicted using the QS approximation, which, as expected, are inadequate, especially
for Rm = 10 and 20. In the runs with N = 1, the anisotropy predicted by the QL
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approximation is always more pronounced than for MHD. For the runs at N = 10,
the same remark holds for the beginning of the decay. After a certain time, the trend
inverses and the anisotropy is more pronounced in the case of MHD. This appears
to be due to a rapid saturation of anisotropy in the QL runs.

The comparison of the anisotropy angles θb are presented in figures 13 and 14.
Here, the trend is given by an underestimate of θb by the QL approximation. The
discrepancy is somewhat more important for the runs where N = 1.

The initial trends observed for both θu and θb are to be expected. Indeed, it is clear
that the additional nonlinear terms present in the MHD equations tend to restore
isotropy. This effect will be more pronounced at the beginning of the decay when
the flow is more turbulent. In the case of θu, it is therefore natural to observe an
initial overestimate of θu by the QL approximation. Similarly, we know from MHD
results discussed earlier that θb starts from an initial value of � 39.2◦ and evolves
progressively towards values close to the isotropic value of 54.7◦. This trend should
be slower in the QL case because of the absence of the nonlinear terms and this is
exactly what is observed in figures 13 and 14.

4.2.4. One-point turbulence structure tensors

The anisotropy angles θu and θb provide a scalar measure of anisotropy. For the
purpose of modelling MHD flows, especially flows with mean deformation, it is also
important to have a directional (tensorial) one-point description of anisotropy. A
one-point statistical measure of anisotropy for the hydrodynamic field is possible
in terms of the structure anisotropy tensors, introduced by Kassinos, Reynolds and
Rogers (2001) and Reynolds & Kassinos (1995). (For possible connections between
the turbulence structure tensors and the MHD correlation tensors see Oughton,
Rädler & Matthaeus (1997).) Formally, these tensors are defined using the vector
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streamfunction Ψi of the turbulence, which in turn is defined by

u′
i = εijkΨ

′
k,j , Ψ ′

i,kk = −ω′
i , Ψ ′

k,k = 0. (4.5)

In the above relations, the superscript ′ is used to specify the fluctuating parts of
each variable used. Furthermore, ω′

i is the fluctuation of the vorticity of the flow:
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ω′ = ∇ × u′. Note also that Ψ ′ is a local quantity that contains non-local turbulence
information.

Here, we make use of simpler definitions that are valid for homogeneous turbulence.
The Reynolds stress tensor can be expressed as

Rij =

∫
Eij (k) d3k, (4.6)

where Eij (k) ∼ ûi(k)û∗
j (k) is the velocity spectrum tensor, k is the wavenumber vector,

hats denote Fourier coefficients and ∗ denotes a complex conjugate. (In homogeneous
fields, discrete Fourier expansions can be used to represent individual realizations
in a box of length L; then the discrete cospectrum of two fields f and g is given

by X̃ij (k) = (L/2π)3f̂i(k)ĝ∗
j (k), where the bar represents an ensemble average over

the box. The cospectrum of two fields Xij (k) is the limit of the discrete cospectrum

X̃ij as L → ∞. Here we use Xij (k) ∼ f̂i(k)ĝ∗
j (k) as a shorthand notation, but the

exact definition should be kept in mind.) Note that if u′
1 = 0 everywhere, then

R11 = 0. We have emphasized (Kassinos & Reynolds 1994; Kassinos et al. 2001)
that Rij describes the componentality of the turbulence, but not its dimensionality.
Two-dimensional turbulence need not be two-component; it could be one-, two-, or
three-component.

The structure dimensionality tensor is

Dij =

∫
kikj

k2
Enn(k) d3k. (4.7)

Like Rij , Dij is dominated by the large-scale energy-containing turbulence. We see that
Dij is determined by the energy distribution along rays in k-space. If the turbulence
is independent of x1 then D11 = 0, since there is no energy associated with modes
having a non-zero k1 component of the wavenumber vector.

The circulicity tensor is

Fij =

∫
1

k2
Wij (k) d3k. (4.8)

where Wij (k) is the (fluctuating) vorticity spectrum tensor. Hence, Fij is determined by
the vorticity of the large-scale energy-containing turbulence. If the large-scale vorticity
is aligned with the x1-axis, then Fij = 0 except for F11. Fij provides information on
the large-scale circulation of the turbulence.

For homogeneous turbulence, the traces of all three tensors are equal to twice the
kinetic energy:

Rii = Dii = Fii = q2 = 2Ek. (4.9)

Moreover, for homogeneous turbulence these tensors are not linearly independent;
they satisfy a constitutive relationship:

Rij + Dij + Fij = q2δij . (4.10)

It is convenient to normalize each of these tensors by their trace:

rij = Rij/Rkk, dij = Dij/Dkk, fij = Fij/Fkk. (4.11)

Of course, rii = dii = fii = 1 and any particular component of the normalized tensors
can vary only between 0 and 1. For isotropic turbulence,

rij = dij = fij = 1
3
δij . (4.12)
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Anisotropy invariant maps, such as the one introduced by Lumley (1978) for the
Reynolds stress, can be formed for each of the structure anisotropy tensors (for
examples see Kassinos & Reynolds 1994).

The evolution of the componentality and dimensionality tensors is shown in
figures 15–18. The general trends are consistent with the picture of anisotropy obtained
from θu and θb. For example, anisotropy is more pronounced at N = 10 than at N = 1,
while at a given N , anisotropy becomes progressively suppressed as Rm is increased
and nonlinear effects become important. The QS approximation (which implicitly
assumes Rm → 0) is of course not able to capture this trend, and the quality of
its predictions is unsatisfactory especially for Rm = 10 and Rm = 20. It is therefore
important that the QL approximation captures enough of the nonlinear effects to be
able to adequately represent this trend for the range of Rm values that we have tested.

The levels of componentality anisotropy (see figures 15 and 16) predicted by the
QL approximation are in excellent agreement with those produced by the MHD
runs. Perhaps the fact that nonlinear terms are retained in the momentum equation
contributes to this excellent agreement. Also, it was shown in Moffatt (1967) that
in the final stages of decay, we should have r33 ≈ r11 + r22 when viscous effects are
neglected in the limit Rm → 0. From figures 15 and 16 (see dotted lines), it is clear
that this result is not valid here and thus that molecular viscosity cannot be neglected
compared to Joule dissipation.

As shown in figures 17 and 18, the overall agreement between the dimensionality
anisotropy levels predicted by the QL approximation and those obtained via MHD
is satisfactory but not perfect. The QL approximation consistently overpredicts the
dimensionality anisotropy at N = 1, whereas this trend is reversed at N = 10, where,
at least at larger times, MHD seems to predict higher anisotropy levels for the
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Figure 17. As figure 15, but for the dimensionality tensors.

dimensionality. However, the QL approximation exhibits the correct trends as Rm is
varied and provides a systematic improvement over the QS approximation for all the
runs performed.

Overall, the structure anisotropy tensors confirm the traditional picture of
elongation of the energy-containing structures in the direction x3 of external mean
magnetic field. This elongation is evidenced by the fact that d33 is suppressed relative
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to d11 and d22, and it is more pronounced in the case N = 10. The turbulence tends
to become two-dimensional; note, however, that it remains three-component (none of
the rij components is appreciably suppressed).

5. Conclusions and future plans
The quasi-static (QS) approximation offers a valuable engineering approximation

for the prediction of MHD flows at small magnetic Reynolds numbers Rm � 1.
However, important technological applications, such as advanced propulsion and
flow control schemes for hypersonic vehicles, involve MHD and MGD flows at
moderate magnetic Reynolds numbers 1 � Rm � 20. In order to devise successful
schemes for the prediction of these technological flows we need to understand better
the intermediate regime that bridges the domain where the QS approximation is valid
and the high-Rm regime, where full nonlinear MHD is the only resort.

By studying the case of decaying homogeneous MHD turbulence, we have
established that the quasi-static (QS) approximation is valid for Rm � 1, but
progressively deteriorates as Rm is increased beyond 1. The magnetic Stuart number
does not seem to have a strong effect on the accuracy of the QS approximation. That
is, at a given Rm, the accuracy of the QS approximation is roughly the same for N = 1
as it is for N = 10.

We have studied another approximation, the QL approximation, for use at higher
Rm. As with the QS approximation, this approximation assumes small magnetic fluc-
tuations, but it resolves the time dependence of these fluctuations explicitly. The QL
approximation performs like the QS approximation for Rm � 1, but has the advantage
that it retains good agreement with MHD for 1 � Rm � 20. It should be noted
that Rm = 20 is the highest value of the magnetic Reynolds number that we have
tested during this effort. Therefore, our numerical simulations indicate that the QL
approximation should be adopted in place of the QS approximation for flows with a
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moderate value of the magnetic Reynolds number (1 � Rm � 20). At higher values of
the magnetic Reynolds number, we cannot avoid using the full MHD equations (at
least for the type of flow considered here). Numerical tests performed at Rm = 50 and
Rm = 100 (not reported in the article) show that the QL approximation is inadequate
in that regime. Thus, the QL approximation cannot be applied directly to study the
dynamo problem.

In terms of computational costs, the QS approximation is clearly the cheapest of
the three methods used during our study. It has fewer nonlinear terms to evaluate,
and the time step required to advance the flow is governed by the time scale of the
velocity field which, for most industrial cases involving liquid metal, is significantly
longer than the time scale of the underlying magnetic field. There is no doubt that
the QS approximation should be the approximation of choice for the prediction of
flows with Rm � 1.

The computational cost of solving directly the QL approximation transport
equations does not depart enormously from that of solving the MHD equations, but
nevertheless allows a reasonable gain since fewer nonlinear terms need be evaluated.
The appeal of the QL approximation lies more in the prospect of simpler turbulence
models for conductive flows at moderate magnetic Reynolds number. Indeed, the
structure of (4.1) and (4.2) is simpler than that of the MHD equations. The gain in
simplicity is even more substantial in terms of the Reynolds-averaged equations. We
thus have a strong hope that devising turbulence models in the framework of the QL
approximation should be an easier task than trying to tackle the MHD equations. In
fact, we are currently engaged in the development of structure-based closures of the
QL approximation for homogeneous turbulence in a conductive fluid subject to mean
deformation and a uniform external magnetic field. This effort builds on earlier work
that dealt with the modelling of decaying homogeneous MHD turbulence.
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